

Salesforce Connector Bot - AppPerfect Corporation

Bot Overview

• Performs Create, Get, Update & Delete operations (both single & bulk operations are
supported) for Custom as well as following Standard Objects:

o Account
o Asset
o Case & CaseFeed
o Contact
o Contract
o Lead
o Opportunity
o Order
o Pricebook
o Product
o Quote
o Task

• Read & Delete the History of Salesforce objects.

• Run Salesforce queries to search your organization's Salesforce data for specific information.

Pre-Requisites

- Automation Anywhere Enterprise v11.3.3 or above.
- Connected App for API access to Salesforce CRM. (More details on this documented at end of

the document)

Installation
- Download the Salesforce Connector Bot provided by AppPerfect Corporation from Automation

Anywhere Bot Store. (https://botstore.automationanywhere.com)
- Double click on <Bot Name>.msi and follow the installation instructions below.

For first time users, the “Bot Store” folder is created under <AA Directory>/My Tasks (on
your local disk).

- Installer creates the following folder structure with content under the <AA Directory>

<AA Directory>

▪ My Tasks
▪ Bot Store

o SalesforceConnectorBot-AppPerfectCorporation

▪ My tasks

• Salesforce Connector Bot.atmx

▪ Error Folder

https://botstore.automationanywhere.com/

▪ Log (Folder)
o Input Error Logs Month-Day-Year.txt

▪ Snapshots (Folder)
o Error Snap Month-Day-Year HourMinuteSecond.png

▪ Input Folder

o Input.csv

▪ Output Folder
o Output.csv

▪ My Metabots
o Salesforce Connector Bot.mbot

How to Configure the Bot:

Use the following information to configure your bot parameters:

 Parameter Name Type Direction Additional Info
SalesforceCredentials(
UserName)

String Input Provide the username for salesforce login.
Create Credential Vault variable "SalesforceCredentials"
which has an attribute called "UserName".
https://docs.automationanywhere.com/bundle/enterprise-
v11.3/page/topics/aae-developer/aae-use-crendential-
valult-to-store-sensitive-
data.html#Zj0vY2F0ZWdvcnkvYnVpbGQ/cD1CdWlsZA==

SalesforceCredentials(
Password)

String Input Provide the password for salesforce login. Create Credential
Vault variable "SalesforceCredentials" which has an attribute
called "Password".

SalesforceCredentials(
ClientId)

String Input Provide the client ID. Create Credential Vault variable
"SalesforceCredentials" which has an attribute called
"ClientId".
More info:
https://auth0.com/docs/connections/social/salesforce

SalesforceCredentials(
ClientSecret)

String Input Provide the client secret. Create Credential Vault variable
"SalesforceCredentials" which has an attribute called
"ClientSecret".
More Info:
https://auth0.com/docs/connections/social/salesforce

 vOutputFileName String Input Provide output file path (in csv) to store obtained result set.
For Eg. C:\Users\Administrator\Desktop\Result.csv

 vLookupFieldName String Input Provide lookup field name to perform Get / Update / Delete
operations.

https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/aae-developer/aae-use-crendential-valult-to-store-sensitive-data.html#Zj0vY2F0ZWdvcnkvYnVpbGQ/cD1CdWlsZA==
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/aae-developer/aae-use-crendential-valult-to-store-sensitive-data.html#Zj0vY2F0ZWdvcnkvYnVpbGQ/cD1CdWlsZA==
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/aae-developer/aae-use-crendential-valult-to-store-sensitive-data.html#Zj0vY2F0ZWdvcnkvYnVpbGQ/cD1CdWlsZA==
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/aae-developer/aae-use-crendential-valult-to-store-sensitive-data.html#Zj0vY2F0ZWdvcnkvYnVpbGQ/cD1CdWlsZA==
https://auth0.com/docs/connections/social/salesforce
https://auth0.com/docs/connections/social/salesforce

For Eg. Lets say if you want to get Account object with name
as AppPerfect then provide the vLookupFieldName as
“Name”.

 vLookupFieldValue String Input Provide lookup field value to perform Get / Update / Delete
operations.
For Eg. Lets say if you want to get Account object with
account name as AppPerfect then provide the
vLookupFieldValue as “AppPerfect”.

 vObjectJson String Input Provide JSON object to perform single Create or update
operation. Leave it blank in case you are doing a bulk
operation.

For Eg. JSON object to insert a single Account would be:
 {“Name”:"AppPerfect", “Site" : “California”}

vInput String Input Define this in case you are performing bulk operations. We
support CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm")
file formats as input. Provide input file path Or you can
directly provide JSON array as an input.

In case of input file, provide the file path of the input file. The
first row in the input file should be a header row which
defines the field names & subsequent records should be the
field values in CSV or Excel file.
For Eg. If you have your input defined in Accounts.csv file
then provide complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Accounts.csv”

In case you don’t want to use input file but need to provide
array of Objects to insert directly, then you can define the
input as JSON array. For eg. JSON Array to insert Accounts
would be :
[{“Name”:"AppPerfect", “Site" : “California”},
{“Name”:"Automation Anywhere", “Site" : “California”}]

vOperation String Input Provide operation type as described in subsequent tables.

vEnvironment String Input [Optional]
Provides the environment type for Salesforce. Values are
added from the config file “ConfigurationFile.txt” in the Input
Folder.

Format for ConfigurationFile.txt:
1. For Sandbox environment:
Environment = Sandbox

2. For Production Environment:
Environment = Production

By default, Production environment will be used.

vResponse String Output 1. In case of successful Get operation.
1.a. Returns ‘SUCCESS’, if vOutputFileName is provided.
1.b. Returns, list of objects if vOutputFileName is empty.

2. In case of successful Insert / Update / Delete operations
2.a. Returns ID of the record which was inserted or updated
or deleted in case of single operation.
2.b. Returns List of record IDs which were inserted / updated
or deleted in case of bulk operation.

vErrorFolder String Input

This is error folder inside bot folder which contains Logs and
Snapshots folder. By default Logs and Snaphosts folders will
be created in this folder. If you need Logs and Snaphosts to
be saved at different location then you can provide the
folder location here.

vLogFolder String Input This folder contains Log file in case of error. By default error
logs will be created in this folder. If you need error logs to be
saved at different location then you can provide the logs
folder location here.

vSnapshotFolder String Input This folder contains Screenshot in case of error. By default
error screenshots will be saved in this folder. If you need
screenshots to be saved at different location then you can
provide the screenshots folder location here.

vInputFolder String Input

This is Input folder inside bot folder which contains Input
files. By default input files are stored in this folder. If you
need input files to be stored at different location then you
can provide the input folder location here.

vOutputFolder String Input

This is Output folder inside bot folder which contains Output
files. By default output files are stored in this folder. If you
need output files to be stored at different location then you
can provide the output folder location here.

For Account Operations configure following parameters:

 Functions Parameter Values

1. Insert an Account vOperation : Insert Account

vObjectJson : Provide JSON object to perform single insert operation.

For Eg. JSON object to insert a single Account would be:
 {“Name”:"AppPerfect", “Site": “California”}

2. Update an Account vOperation : Update Account

vObjectJson : Provide JSON object to perform single update operation.

For Eg. JSON object to update a single Account would be:
 {“Name”:"AppPerfectCorporation", “Site": “California”}

vLookupFieldName :
Provide lookup field name to perform Update operation.
For Eg. If you want to update Account object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Update operation.
For Eg. If you want to update Account object with account name as
AppPerfect then provide the vLookupFieldValue as “AppPerfect”.

3. Delete an Account vOperation : Delete Account

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. If you want to delete Account object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. If you want to delete Account object with account name as AppPerfect
then provide the vLookupFieldValue as “AppPerfect”.

4. Get Accounts from
Salesforce

vOperation : Get Account

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. If you want to get Account object with Account name as AppPerfect
then provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. If you want to get Account object with Account name as AppPerfect
then provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in CSV) to store obtained result
set.
For Eg. C:\Users\Administrator\Desktop\Result.csv

5. Insert Accounts in
bulk

vOperation : Bulk Insert Account

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Accounts.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Accounts.csv”

In case you don’t want to use input file but need to provide array of Objects to
insert directly, then you can define the input as JSON array. For eg. JSON Array
to insert Accounts would be :
[{“Name”:"AppPerfect", “Site" : “California”}, {“Name”:"Automation
Anywhere", “Site" : “California”}]

6. Update Accounts in
bulk

vOperation : Bulk Update Account

vLookupFieldName : Provide lookup field name to perform Update operation.
For Eg. If you want to update Account object with Account
name as given in file or JSON array then provide the vLookupFieldName as
“Name”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Accounts.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Accounts.csv”

In case you don’t want to use input file but need to provide array of Objects to
update directly, then you can define the input as JSON array. For Eg. JSON
Array to update Accounts would be :
[{“Name”:"AppPerfect Corporation", “Site" : “California”},
{“Name”:"Automation Anywhere", “Site" : “USA”}]

7. Delete Accounts in
bulk

vOperation : Bulk Delete Account

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Accounts.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Accounts.csv”

In case you don’t want to use input file but need to provide array of Objects to
delete directly, then you can define the input as JSON array. For eg. JSON
Array to delete Accounts would be :
[{“Name”:"AppPerfect Corporation"}, {“Name”:"Automation Anywhere"}]

For Asset Operations configure following parameters:

 Functions Parameter Values

1. Insert an Asset vOperation : Insert Asset

vObjectJson : Provide JSON object to perform single insert operation.
For Eg. JSON object to insert a single Asset would be:
 {“Name”:"AppPerfect", “AccountId”:" 0012v00002LgZcZAAV"}

2. Update an Asset vOperation : Update Asset

vObjectJson : Provide JSON object to perform single update operation.

For Eg. JSON object to update a single Asset would be:
 {“Name”:"AppPerfect Corporation", “AccountId”:" 0012v00002LgZcZAAV"}

vLookupFieldName :
Provide lookup field name to perform Update operation.
For Eg. If you want to update Asset object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Update operation.
For Eg. If you want to update Asset object with name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

3. Delete an Asset vOperation : Delete Asset

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. If you want to delete Asset object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. If you want to delete Asset object with name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

4. Get Assets from
Salesforce

vOperation : Get Asset

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. If you want to get Asset objects with asset name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. If you want to get Asset object with asset name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in CSV) to store obtained result
set.
For Eg. C:\Users\Administrator\Desktop\Result.csv

5. Insert Assets in bulk vOperation : Bulk Insert Asset

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Assets.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Assets.csv”

In case you don’t want to use input file but need to provide array of Objects
to insert directly, then you can define the input as JSON array. For eg. JSON
Array to insert Assets would be :
[{“Name”:"AppPerfect", “AccountId”:" 0012v00002LgZcZAAV"},{“Name”:"
Automation Anywhere", “AccountId”:" 0012v00002Liel7AAB "}]

6. Update Assets in
bulk

vOperation : Bulk Update Assets

vLookupFieldName : Provide lookup field name to perform Update operation.
For Eg. If you want to update Asset object with asset

name as given in file or JSON array then provide the vLookupFieldName as
“Name”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Assets.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Assets.csv”

In case you don’t want to use input file but need to provide array of Objects to
update directly, then you can define the input as JSON array. For eg. JSON
Array to update Assets would be :
[{“Name”:"AppPerfect Corporation", “AccountId”:"

0012v00002LgZcZAAV"},{“Name”:" Automation Anywhere", “AccountId”:"

0012v00002Liel7AAB "}]

7. Delete Assets in bulk vOperation : Bulk Delete Asset

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the single field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Assets.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Assets.csv”

In case you don’t want to use input file but need to provide array of Objects to
delete directly, then you can define the input as JSON array. For eg. JSON
Array to delete Assets would be :
[{“Name”:"AppPerfect Corporation"}, {“Name”:"Automation Anywhere"}]

For Case Operations configure following parameters:

 Functions Parameter Values

1. Insert a Case vOperation : Insert Case

vObjectJson : Provide JSON object to perform single insert operation.

For Eg. JSON object to insert a single Case would be:
{“Type”:”IT Profession”,” Priority “:”Medium”,” ContactId
“:”0032v00002l0ajLAAQ”}

2. Update a Case vOperation : Update Case

vObjectJson : Provide JSON object to perform single update operation.

For Eg. JSON object to update a single Case would be:
 {“Type”:”IT Industry”,” Priority “:”Medium”,” ContactId
“:”0032v00002l0ajLAAQ”}

vLookupFieldName :
Provide lookup field name to perform Update operation.
For Eg. If you want to update Case object with type as IT Profession then
provide the vLookupFieldName as “Type”.

vLookupFieldValue :
Provide lookup field value to perform Update operation.
For Eg. If you want to update Case object with type as IT Profession then
provide the vLookupFieldValue as “IT Profession”.

3. Delete a Case vOperation : Delete Case

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. If you want to delete Case object with type as IT Profession then
provide the vLookupFieldName as “Type”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. If you want to delete Case with type as IT Profession then provide the
vLookupFieldValue as “IT Profession”.

4. Get Cases from
Salesforce

vOperation : Get Case

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. If you want to get Case object with type as IT Profession then provide
the vLookupFieldName as “Type”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. If you want to get Case with type as IT Profession then provide the
vLookupFieldValue as “IT Profession”.

vOutputFileName: Provide output file path (in CSV) to store obtained result
set.
For Eg. C:\Users\Administrator\Desktop\Result.csv

5. Insert Cases in bulk vOperation : Bulk Insert Case

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Cases.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Cases.csv”

In case you don’t want to use input file but need to provide array of Objects to
insert directly, then you can define the input as JSON array. For eg. JSON Array
to insert Cases would be :
[{“Type”:”IT Profession”,” Priority “:”Medium”,” ContactId
“:”0032v00002l0ajLAAQ”}, {“Type”:”Electrical”,” Priority “:”Medium”,”

ContactId “:”0032v00002l0ajLAAQ”}]

6. Update Cases in bulk vOperation : Bulk Update Case

vLookupFieldName : Provide lookup field name to perform Update operation.
For Eg. If you want to update Case object with type as IT Profession then
provide the vLookupFieldName as “Type”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Cases.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Cases.csv”

In case you don’t want to use input file but need to provide array of Objects to
update directly, then you can define the input as JSON array. For eg. JSON
Array to update Cases would be :
[{“Type”:”IT Profession”,” Priority “:”Medium”,” ContactId
“:”0032v00002l0ajLAAQ”}, {“Type”:”Electrical”,” Priority “:”Medium”,”

ContactId “:”0032v00002l0ajLAAQ”}]

7. Delete Cases in bulk vOperation : Bulk Delete Case

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the

input file should be a header row which defines the single field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Cases.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Cases.csv”

In case you don’t want to use input file but need to provide array of Objects to
delete directly, then you can define the input as JSON array. For eg. JSON
Array to delete Cases would be :
[{“Type”:”IT Industry”}, {“Type”:”Electrical”}]

For CaseFeed Operations configure following parameters:

 Functions Parameter Values

1. Delete a CaseFeed vOperation : Delete CaseFeed

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. If you want to delete CaseFeed object with type as CreateRecordEvent
then provide the vLookupFieldName as “Type”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. If you want to delete CaseFeed object with type as CreateRecordEvent
then provide the vLookupFieldValue as “CreateRecordEvent”.

2. Get CaseFeeds from
Salesforce

vOperation : Get CaseFeed

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. If you want to get CaseFeed objects type as CreateRecordEvent then
provide the vLookupFieldName as “Type”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. If you want to get CaseFeed objects with type as CreateRecordEvent
then provide the vLookupFieldValue as “CreateRecordEvent”.

vOutputFileName: Provide output file path (in CSV) to store obtained result
set.
For Eg. C:\Users\Administrator\Desktop\Result.csv

3. Delete CaseFeeds in
bulk

vOperation : Bulk Delete CaseFeed

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the single field name &
subsequent records should be the field values in CSV or Excel file.

For Eg. If you have your input defined in CaseFeeds.csv file then provide
complete path of the CSV file here, like “C:\Users\Administrator\Desktop\
CaseFeeds.csv”

In case you don’t want to use input file but need to provide array of Objects to
delete directly, then you can define the input as JSON array. For eg. JSON
Array to delete CaseFeeds would be :
[{“Type”:" CreateRecordEvent"}, {“Type”:" DeleteRecordEvent"}]

For Contact Operations configure following parameters:

Functions Parameter Values

1. Insert a Contact vOperation : Insert Contact

vObjectJson : Provide JSON object to perform single insert operation.

For E.g. JSON object to insert a single Contact would be:
{“LastName”:"AppPerfect",”Email”:”appperfect@gmail.com”}

2. Update a Contact vOperation : Update Contact

vObjectJson : Provide JSON object to perform single Update operation.

vLookupFieldName :
Provide lookup field name to perform Update operation.
For E.g. if you want to Update Contact object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For E.g. if you want to Update Contact object with Contact name as
AppPerfect then provide the vLookupFieldValue as “AppPerfect”.

For Eg. JSON object to Update a single Contact would be:
{“LastName”:"AppPerfect",”Email”:”appperfect@gmail.com”,
"Phone":"2211445566"}

3. Delete a Contact vOperation : Delete Contact

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. Lets say if you want to delete Contact object with name as AppPerfect
then provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. if you want to delete Contact object with Contact name as AppPerfect
then provide the vLookupFieldValue as “AppPerfect”.

Eg: vLookupFieldName : Name & vLookupFieldValue : AppPerfect

4. Get Contacts
From Salesforce

vOperation : Get Contact

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. if you want to Get Contact object with Contact name as AppPerfect
then provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. if you want to Get Contact object with Contact name as AppPerfect
then provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in csv) to store obtained result
set.

 Ex. C:\Users\Administrator\Desktop\Result.csv

5. Insert Contacts in
Bulk

vOperation : Bulk Insert Contact

 vFilePath : set FilePath as
 C:\Users\Administrator\Desktop\FieldName.xlsx
 Provide csv or excel file path to perform bulk operation

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm”) file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Contacts.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Contacts.csv”

In case you don’t want to use input file but need to provide array of Objects to
insert directly, then you can define the input as JSON array. For eg. JSON Array
to insert Contacts would be :
[{“LastName”:"AppPerfect",”Email”:”appperfect@gmail.com”}]

6. Update Contacts
in Bulk

vOperation : Bulk Update Contact

vLookupFieldName : Provide lookup field name to perform Update operation.
For Eg. If you want to update Contacts object with Contact
name as given in file or JSON array then provide the vLookupFieldName as
“Name”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file

formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Contacts.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Contacts.csv”

In case you don’t want to use input file but need to provide array of Objects
to Update directly, then you can define the input as JSON array. For eg. JSON
Array to update Contacts would be :
[{“Name”:"AppPerfect Corporation", “Site" : “California”},
{“Name”:"Automation Anywhere", “Site" : “USA”}]

7. Delete Contacts
in bulk

vOperation : Bulk Delete Contact

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.
In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the single field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Contacts.csv file then provide
complete path of the CSV file here, like “C:\Users\Administrator\Desktop\
Contacts.csv”

In case you don’t want to use input file but need to provide array of Objects
to delete directly, then you can define the input as JSON array. For eg. JSON
Array to delete Contacts would be :
[{“Name”:"AppPerfect Corporation"}, {“Name”:"Automation Anywhere"}]

For Opportunity Operations configure following parameters:

Functions Parameter Values

1. Insert an
Opportunity

vOperation : Insert Opportunity

vObjectJson : Provide JSON object to perform single insert operation.

For E.g. JSON object to insert a single Opportunity would be:
{"Name":"Appperfect","CloseDate":"1997-01-01","StageName":"Prospecting"}

2. Update an
Opportunity

vOperation : Update Opportunity

vObjectJson : Provide JSON object to perform single Update operation.

vLookupFieldName :
Provide lookup field name to perform Update operation.
For E.g. if you want to Update Opportunity object with name as AppPerfect
then provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For E.g. if you want to Update Opportunity object with Opportunity name as
AppPerfect then provide the vLookupFieldValue as “AppPerfect”.

For Eg. JSON object to Update a single Opportunity would be:
{"Name":"Sales","CloseDate":"1997-01-01","StageName":"Prospecting" }

3. Delete an
Opportunity

vOperation : Delete Opportunity

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. if you want to delete Opportunity object with name as AppPerfect
then provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. if you want to delete Opportunity object with Opportunity name as
AppPerfect then provide the vLookupFieldValue as “AppPerfect”.

4. Get an
Opportunity

vOperation : Get Opportunity

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. if you want to Get Opportunity object with Opportunity name as
AppPerfect then provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. if you want to Get Opportunity object with Opportunity name as
AppPerfect then provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in csv) to store obtained result
set.

 Ex. C:\Users\Administrator\Desktop\Result.csv

5. Insert
Opportunity in
Bulk

vOperation : Bulk Insert Opportunity

 vFilePath : set FilePath as
 C:\Users\Administrator\Desktop\FieldName.xlsx
 Provide csv or excel file path to perform bulk operation

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm”) file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Opportunity.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Opportunity.csv”

In case you don’t want to use input file but need to provide array of Objects to
insert directly, then you can define the input as JSON array. For eg. JSON Array
to insert Opportunity would be :
[{"Name":"Appperfect","CloseDate":"1997-01-1","StageName":"Prospecting"
},{"Name":"Salesforce","CloseDate":"1997-01-01","StageName":"Prospecting"
}]

6. Update
Opportunity in
Bulk

vOperation : Bulk Update Opportunity

vLookupFieldName : Provide lookup field name to perform Update operation.
For Eg. If you want to update Opportunity object with Opportunity
name as given in file or JSON array then provide the vLookupFieldName as
“Name”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Opportunity.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Opportunity.csv”

In case you don’t want to use input file but need to provide array of Objects
to Update directly, then you can define the input as JSON array. For eg. JSON
Array to update Opportunity would be :
[{"Name":"RPA","CloseDate":"1997-01-1","StageName":"Prospecting"
},{"Name":"AutomationAnywhere","CloseDate":"1997-01-
01","StageName":"Prospecting" }]

7. Bulk Delete
Opportunity

vOperation : Bulk Delete Opportunity

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.
In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the single field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Opportunity.csv file then provide

complete path of the CSV file here, like “C:\Users\Administrator\Desktop\
Opportunity.csv”

In case you don’t want to use input file but need to provide array of Objects
to delete directly, then you can define the input as JSON array. For eg. JSON
Array to delete Opportunity would be :
[{"Name":"RPA”},{"Name":"AutomationAnywhere"}]

For Single Operations on Custom Operations configure following parameters:

Functions Parameter Values

1. Insert an Object vOperation : Insert Object

vObjectJson : Provide JSON object to perform single insert operation.

vObjectType : Provide Salesforce object type to perform Insert

operations. For E.g. vObjectType= Lead.

For E.g. JSON object to insert a single Object would be:
{“LastName”:"AppPerfect",”Email”:”appperfect@gmail.com”}

2. Update an Object vOperation : Update Object

vObjectJson : Provide JSON object to perform single Update operation.

vObjectType : Provide Salesforce object type to perform Update

operations. For E.g. vObjectType= Lead.

vLookupFieldName :
Provide lookup field name to perform Update operation.
For E.g. if you want to Update Object with name as AppPerfect then provide
the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For E.g. if you want to Update Object with Object name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

For Eg. JSON object to Update a single Object would be:
{“LastName”:"AppPerfect",”Email”:”appperfect@gmail.com”,
"Phone":"2211445566"}

3. Delete an Object vOperation : Delete Object

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. Lets say if you want to delete Object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vObjectType : Provide Salesforce object type to perform Delete

operations. For E.g. vObjectType= Lead.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. if you want to delete Object with Object name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

4. Run Query in
Salesforce

 vOperation : Query Object

 vQuery : Provide any salesforce query.
 For Eg. select Id, Name from Account

vOutputFileName: Provide output file path (in csv) to store obtained result
set.

 For Eg. C:\Users\Administrator\Desktop\Result.csv

For Bulk Operations on Custom Objects configure following parameters:

Functions Parameter Values

1. Insert Objects in bulk vOperation : Insert Bulk Object

vObjectJson : Provide JSON Bulk Object to perform single insert operation.

vObjectType : Provide Salesforce Object type to perform Insert

operations. For E.g. vObjectType= Lead.

For E.g. JSON object to insert a single Object would be:
{“LastName”:"AppPerfect",”Email”:”appperfect@gmail.com”}

2. Update Objects in
bulk

vOperation : Update Bulk Object

vObjectJson : Provide JSON object to perform single Update operation.

vObjectType : Provide Salesforce object type to perform Update

operations. For E.g. vObjectType= Lead.

vLookupFieldName :
Provide lookup field name to perform Update operation.
For E.g. if you want to Update Object with name as AppPerfect then provide
the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For E.g. if you want to Update Object with Object name as AppPerfect then

provide the vLookupFieldValue as “AppPerfect”.

For Eg. JSON object to Update a single Object would be:
{“LastName”:"AppPerfect",”Email”:”appperfect@gmail.com”,
"Phone":"2211445566"}

3. Delete Objects in bulk vOperation : Delete Bulk Object

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. Lets say if you want to delete Object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vObjectType : Provide Salesforce object type to perform Delete

operations. For E.g. vObjectType= Lead.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. if you want to delete Object with Object name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

4. Get Objects from
Salesforce

vOperation : Get Contract

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. if you want to Get Contract object with Contract name as AppPerfect
then provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. if you want to Get Contract object with Contract name as AppPerfect
then provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in csv) to store obtained result
set.

 Ex. C:\Users\Administrator\Desktop\Result.csv

vObjectType : Provide Salesforce object type to perform Delete

operations. For Eg. Lead.

For Contract Operations configure following parameters:

Functions Parameter Values

1. Insert a Contract vOperation : Insert Contract

vObjectJson : Provide JSON object to perform single insert operation.

For E.g. JSON object to insert a single Contract would be:
{"AccountId":"0012v00002LiSIGAA3","Status":"Draft","ContractTerm":"6"}

2. Update a vOperation : Update Contract

Contract
vObjectJson : Provide JSON object to perform single Update operation.

vLookupFieldName :
Provide lookup field name to perform Update operation.
For E.g. if you want to Update Contract object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For E.g. if you want to Update Contract object with Contract name as
AppPerfect then provide the vLookupFieldValue as “AppPerfect”.

For Eg. JSON object to Update a single Contract would be:
{"AccountId":"0012v00002LiSIGAA3","Status":"Activated","ContractTerm":"8
"}

3. Delete a Contract vOperation : Delete Contract

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. if you want to delete Contract object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. if you want to delete Contract object with Contract name as
AppPerfect then provide the vLookupFieldValue as “AppPerfect”.

4. Get Contracts
from Salesforce

vOperation : Get Contract

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. if you want to Get Contract object with Contract name as AppPerfect
then provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. if you want to Get Contract object with Contract name as AppPerfect
then provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in csv) to store obtained result
set.

 Ex. C:\Users\Administrator\Desktop\Result.csv

5. Insert Contracts
in Bulk

vOperation : Bulk Insert Contract

 vFilePath : set FilePath as
 C:\Users\Administrator\Desktop\FieldName.xlsx
 Provide csv or excel file path to perform bulk operation

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm”) file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Contracts.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Contracts.csv”

In case you don’t want to use input file but need to provide array of Objects
to insert directly, then you can define the input as JSON array. For eg. JSON
Array to insert Contracts would be :
[{"AccountId":"0012v00002LiSIGBB3","Status":"Draft","ContractTerm":"6"
}, {"AccountId":"0012v00002LiSIHHA3","Status":"Draft","ContractTerm":"5"
}]

6. Update Contracts
in bulk

vOperation : Bulk Update Contract

vLookupFieldName : Provide lookup field name to perform Update
operation.
For Eg. If you want to update Contracts object with Contract
name as given in file or JSON array then provide the vLookupFieldName as
“Name”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Contracts.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Contracts.csv”

In case you don’t want to use input file but need to provide array of Objects
to Update directly, then you can define the input as JSON array. For eg. JSON
Array to update Contracts would be :
[{"AccountId":"0012v00002LiSIGBB3","Status":"Activated","ContractTerm":"
7"
},
{"AccountId":"0012v00002LiSIHHA3","Status":"Activated","ContractTerm":"8
"}]

7. Delete Contracts vOperation : Bulk Delete Contract

in bulk
vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.
In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the single field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Contracts.csv file then provide
complete path of the CSV file here, like “C:\Users\Administrator\Desktop\
Contracts.csv”

In case you don’t want to use input file but need to provide array of Objects
to delete directly, then you can define the input as JSON array. For eg. JSON
Array to delete Contracts would be :
[{"AccountId":"0012v00002LiSIGBB3"},
{"AccountId":"0012v00002LiSIHHA3"}]

For Lead Operations configure following parameters:

Functions Parameter Values

1. Insert a Lead vOperation : Insert Lead

vObjectJson : Provide JSON object to perform single insert operation.

For E.g. JSON object to insert a single Lead would be:
{"LastName":"Johny","Company":" AppPerfect " }

2. Update a Lead vOperation : Update Lead

vObjectJson : Provide JSON object to perform single Update operation.

vLookupFieldName :
Provide lookup field name to perform Update operation.
For E.g. if you want to Update Lead object with name as AppPerfect then
provide the vLookupFieldName as “LastName”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For E.g. if you want to Update Lead object with Leads name as AppPerfect
then provide the vLookupFieldValue as “AppPerfect”.

For Eg. JSON object to Update a single Lead would be:
{"LastName":"Harry","Company":"RedHat" }

3. Delete a Lead vOperation : Delete Lead

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. if you want to delete Lead object with name as AppPerfect then
provide the vLookupFieldName as “LastName”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. if you want to delete Lead object with Leads name as AppPerfect
then provide the vLookupFieldValue as “AppPerfect”.

4. Get Leads from
Salesforce

vOperation : Get Lead

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. if you want to Get Lead object with Lead name as AppPerfect then
provide the vLookupFieldName as “LastName”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. if you want to Get Lead object with Lead name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in csv) to store obtained result
set.

 Ex. C:\Users\Administrator\Desktop\Result.csv

5. Insert Leads in Bulk vOperation : Bulk Insert Lead

 vFilePath : set FilePath as
 C:\Users\Administrator\Desktop\FieldName.xlsx
 Provide csv or excel file path to perform bulk operation

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm”) file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Leads.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Leads.csv”

In case you don’t want to use input file but need to provide array of Objects
to insert directly, then you can define the input as JSON array. For eg. JSON
Array to insert Leads would be :
[{"LastName":"Johny","Company":" RedHat"

},{"LastName":"keper","Company":" AppPerfectCorp " }]

6. Update Leads in
Bulk

vOperation : Bulk Update Lead

vLookupFieldName : Provide lookup field name to perform Update
operation.
For Eg. If you want to update Leads object with Lead
name as given in file or JSON array then provide the vLookupFieldName as
“LastName”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Leads.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Leads.csv”

In case you don’t want to use input file but need to provide array of Objects
to Update directly, then you can define the input as JSON array. For eg. JSON
Array to update Leads would be :
[{"LastName":"Johny","Company":" RedHat"
},{"LastName":"keper","Company":" AppPerfectCorp " }]

7. Delete Leads in bulk vOperation : Bulk Delete Lead

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.
In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the single field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Leads.csv file then provide
complete path of the CSV file here, like “C:\Users\Administrator\Desktop\
Leads.csv”

In case you don’t want to use input file but need to provide array of Objects
to delete directly, then you can define the input as JSON array. For eg. JSON
Array to delete Leads would be :
[{"LastName":"Johny" },{"LastName":"keper" }]

For Order Operations configure following parameters:

 Functions Parameter Values
1. Insert an Order vOperation : Insert Order

vObjectJson : Provide JSON object to perform single insert operation.

 For Eg. JSON object to insert a single Order would be:
 {“AccountId”:"AB12323132", “OwnerId" :
“23AN9900”,”Pricebook2Id”:”R23232323”}

2. Update an Order vOperation : Update Order

vObjectJson : Provide JSON object to perform single update operation.

For Eg. JSON object to update a single Order would be:
{“AccountId”:"AB12323142", “OwnerId" : “23AN9900”,”
Pricebook2Id”:”R23232323”}

vLookupFieldName :
Provide lookup field name to perform Update operation.
For Eg. If you want to update Order object with OwnerId as R23232323 then
provide the vLookupFieldName as “R23232323”.

vLookupFieldValue :
Provide lookup field value to perform Update operation.
For Eg. If you want to update Order object with Order OwnerId as
R23232323 then provide the vLookupFieldValue as “R23232323”.

3. Delete an Order vOperation : Delete Order

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. If you want to delete Order object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. If you want to delete Order object with Order OwnerId as R23232323
then provide the vLookupFieldValue as “R23232323”.

4. Get Orders from
Salesforce

vOperation : Get Order

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. If you want to get Order object with Order OwnerId as R23232323
then provide the vLookupFieldName as “OwnerId”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. If you want to get Order object with Order OwnerId as R23232323
then provide the vLookupFieldValue as “R23232323”.

vOutputFileName: Provide output file path (in CSV) to store obtained result
set.
For Eg. C:\Users\Administrator\Desktop\Result.csv

5. Insert Orders in bulk vOperation : Bulk Insert Order

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Orders.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Orders.csv”

In case you don’t want to use input file but need to provide array of Objects
to insert directly, then you can define the input as JSON array. For eg. JSON
Array to insert Orders would be :
[{“AccountId”:"AB12323132", “OwnerId" : “23AN9900”,”
Pricebook2Id”:”R23232323”}, {“AccountId”:"AB12323132", “OwnerId" :
“23AN9900”,” Pricebook2Id”:”R23342323”}]

6. Update Orders in
bulk

vOperation : Bulk Update Order

vLookupFieldName : Provide lookup field name to perform Update
operation.
For Eg. If you want to update Order object with Order
name as given in file or JSON array then provide the vLookupFieldName as
“ownerId”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Orders.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Orders.csv”

In case you don’t want to use input file but need to provide array of Objects
to update directly, then you can define the input as JSON array. For eg. JSON
Array to update Orders would be :
[{“AccountId”:"AB12323132", “OwnerId" : “23AN9900”,”

Pricebook2Id”:”R23232323”}, {“AccountId”:"AB12323132", “OwnerId" :
“23AN9900”,” Pricebook2Id”:”R23342323”}]

7. Delete Orders in
bulk

vOperation : Bulk Delete Order

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the singlr field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Orders.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Orders.csv”

In case you don’t want to use input file but need to provide array of Objects
to delete directly, then you can define the input as JSON array. For eg. JSON
Array to delete Orders would be :
[{“AccountId”:"AB12323132"{“AccountId”:"AB12323132"}]

For PriceBook Operations configure following parameters:

 Functions Parameter Values

1. Insert a PriceBook vOperation : Insert PriceBook

vObjectJson : Provide JSON object to perform single insert operation.

For Eg. JSON object to insert a single PriceBook would be:
 {“Name”:"AppPerfect", “Description" : “Price book for APS”}

2. Update a PriceBook vOperation : Update PriceBook

vObjectJson : Provide JSON object to perform single update operation.

For Eg. JSON object to update a single PriceBook would be:
 {“Name”:"AppPerfectCorporation", “Description" : “Price book for APS”}}

vLookupFieldName :
Provide lookup field name to perform Update operation.
For Eg. If you want to update PriceBook object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Update operation.
For Eg. If you want to update PriceBook object with PriceBook name as
AppPerfect then provide the vLookupFieldValue as “AppPerfect”.

3. Delete a PriceBook vOperation : Delete PriceBook

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. If you want to delete PriceBook object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. If you want to delete PriceBook object with PriceBook name as
AppPerfect then provide the vLookupFieldValue as “AppPerfect”.

4. Get PriceBooks from
Salesforce

vOperation : Get PriceBook

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. If you want to get PriceBook object with PriceBook name as
AppPerfect then provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. If you want to get PriceBook object with PriceBook name as
AppPerfect then provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in CSV) to store obtained result
set.
For Eg. C:\Users\Administrator\Desktop\Result.csv

5. Insert PriceBooks in
bulk

vOperation : Bulk Insert PriceBook

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in PriceBooks.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\PriceBooks.csv”

In case you don’t want to use input file but need to provide array of Objects
to insert directly, then you can define the input as JSON array. For eg. JSON
Array to insert PriceBooks would be :
[{“Name”:"AppPerfect", “Description" : “Price book for APS”}},
{“Name”:"Automation Anywhere", “Description" : “Price book for APS”}}]

6. Update PriceBooks
in bulk

vOperation : Bulk Update PriceBook

vLookupFieldName : Provide lookup field name to perform Update
operation.
For Eg. If you want to update PriceBook object with PriceBook
name as given in file or JSON array then provide the vLookupFieldName as
“Name”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in PriceBooks.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\PriceBooks.csv”

In case you don’t want to use input file but need to provide array of Objects
to update directly, then you can define the input as JSON array. For eg. JSON
Array to update PriceBooks would be :
[{“Name”:"AppPerfect Corporation", “Description" : “Price book for APS”}},
{“Name”:"Automation Anywhere", “Description" : “Price book for APS”}}]

7. Delete PriceBooks in
bulk

vOperation : Bulk Delete PriceBook

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the singlr field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in PriceBooks.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\PriceBooks.csv”

In case you don’t want to use input file but need to provide array of Objects
to delete directly, then you can define the input as JSON array. For eg. JSON
Array to delete PriceBooks would be :
[{“Name”:"AppPerfect Corporation"}, {“Name”:"Automation Anywhere"}]

For Product Operations configure following parameters:

 Functions Parameter Values
1. Insert a Product vOperation : Insert Product

vObjectJson : Provide JSON object to perform single insert operation.

For Eg. JSON object to insert a single Product would be:
 {“Name”:"Digital bot -23", “defaultPrice" : “1000”}

2. Update a Product vOperation : Update Product

vObjectJson : Provide JSON object to perform single update operation.

For Eg. JSON object to update a single Product would be:
{“Name”:"Digital bot -23", “defaultPrice" : “1000”}

vLookupFieldName :
Provide lookup field name to perform Update operation.
For Eg. If you want to update Product object with name as Digital bot -23 then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Update operation.
For Eg. If you want to update Product object with Product name as Digital bot -
23 then provide the vLookupFieldValue as “Digital bot -23”.

3. Delete a Product vOperation : Delete Product

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. If you want to delete Product object with name as Digital bot -23 then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. If you want to delete Product object with Product name as Digital bot -
23 then provide the vLookupFieldValue as “Digital bot -23”.

4. Get Products
from Salesforce

vOperation : Get Product

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. If you want to get Product object with Product name as Digital bot -
23then provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. If you want to get Product object with Product name as Digital bot -
23then provide the vLookupFieldValue as “Digital bot -23”.

vOutputFileName: Provide output file path (in CSV) to store obtained result set.

For Eg. C:\Users\Administrator\Desktop\Result.csv

5. Insert Products in
bulk

vOperation : Bulk Insert Product

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Products.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Products.csv”

In case you don’t want to use input file but need to provide array of Objects to
insert directly, then you can define the input as JSON array. For eg. JSON Array
to insert Products would be :
[{“Name”:"Digital bot -23", “defaultPrice" : “1000”}]

6. Update Products
in bulk

vOperation : Bulk Update Product

vLookupFieldName : Provide lookup field name to perform Update operation.
For Eg. If you want to update Product object with Product
name as given in file or JSON array then provide the vLookupFieldName as
“Name”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Products.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Products.csv”

In case you don’t want to use input file but need to provide array of Objects to
update directly, then you can define the input as JSON array. For eg. JSON Array
to update Products would be :
[{“Name”:"Digital bot -23", “defaultPrice" : “1000”}
, {“Name”:"Digital bot -24", “defaultPrice" : “1000”}]

7. Delete Products
in bulk

vOperation : Bulk Delete Product

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file

formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the singlr field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Products.csv file then provide
complete path of the CSV file here, like
“C:\Users\Administrator\Desktop\Products.csv”

In case you don’t want to use input file but need to provide array of Objects to
delete directly, then you can define the input as JSON array. For eg. JSON Array
to delete Products would be :
[{“Name”:" Digital bot -23"}, {“Name”:" Digital bot -25"}]

For Quote Operations configure following parameters:

 Functions Parameter Values

1. Insert a Quote vOperation : Insert Quote

vObjectJson : Provide JSON object to perform single insert operation.

For Eg. JSON object to insert a single Quote would be:
 {“Name”:"AppPerfect", “Site" : “California”}

2. Update a Quote vOperation : Update Quote

vObjectJson : Provide JSON object to perform single update operation.

For Eg. JSON object to update a single Quote would be:
 {“Name”:"AppPerfectCorporation", “Site" : “California”}

vLookupFieldName :
Provide lookup field name to perform Update operation.
For Eg. If you want to update Quote object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Update operation.
For Eg. If you want to update Quote object with Quote name as AppPerfect
then provide the vLookupFieldValue as “AppPerfect”.

3. Delete a Quote vOperation : Delete Quote

vLookupFieldName :
Provide lookup field name to perform Delete operation.

For Eg. If you want to delete Quote object with name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. If you want to delete Quote object with Quote name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

4. Get Quotes from
Salesforce

vOperation : Get Quote

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. If you want to get Quote object with Quote name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. If you want to get Quote object with Quote name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in CSV) to store obtained result set.
For Eg. C:\Users\Administrator\Desktop\Result.csv

5. Insert Quotes in
bulk

vOperation : Bulk Insert Quote

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Quotes.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Quotes.csv”

In case you don’t want to use input file but need to provide array of Objects to
insert directly, then you can define the input as JSON array. For eg. JSON Array
to insert Quotes would be :
[{“Name”:"AppPerfect", “Site" : “California”}, {“Name”:"Automation Anywhere",
“Site" : “California”}]

6. Update Quotes in
bulk

vOperation : Bulk Update Quote

vLookupFieldName : Provide lookup field name to perform Update operation.
For Eg. If you want to update Quote object with Quote
name as given in file or JSON array then provide the vLookupFieldName as
“Name”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file

formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Quotes.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Quotes.csv”

In case you don’t want to use input file but need to provide array of Objects to
update directly, then you can define the input as JSON array. For eg. JSON Array
to update Quotes would be :
[{“Name”:"AppPerfect Corporation", “Site" : “California”},
{“Name”:"Automation Anywhere", “Site" : “USA”}]

7. Delete Quotes in
bulk

vOperation : Bulk Delete Quote

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the singlr field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Quotes.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Quotes.csv”

In case you don’t want to use input file but need to provide array of Objects to
delete directly, then you can define the input as JSON array. For eg. JSON Array
to delete Quotes would be :
[{“Name”:"AppPerfect Corporation"}, {“Name”:"Automation Anywhere"}]

For Task Operations configure following parameters:

 Functions Parameter Values

1. Insert a Task vOperation : Insert Task

vObjectJson : Provide JSON object to perform single insert operation.

For Eg. JSON object to insert a single Task would be:
 {“Name”:"AppPerfect", “Site" : “California”}

2. Update a Task vOperation : Update Task

vObjectJson : Provide JSON object to perform single update operation.

For Eg. JSON object to update a single Task would be:
 {“Name”:"AppPerfectCorporation", “Site" : “California”}

vLookupFieldName :
Provide lookup field name to perform Update operation.
For Eg. If you want to update Task object with name as AppPerfect then provide
the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Update operation.
For Eg. If you want to update Task object with Task name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

3. Delete a Task vOperation : Delete Task

vLookupFieldName :
Provide lookup field name to perform Delete operation.
For Eg. If you want to delete Task object with name as AppPerfect then provide
the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. If you want to delete Task object with Task name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

4. Get Tasks from
Salesforce

vOperation : Get Task

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. If you want to get Task object with Task name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. If you want to get Task object with Task name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in CSV) to store obtained result set.
For Eg. C:\Users\Administrator\Desktop\Result.csv

5. Insert Tasks in
bulk

vOperation : Bulk Insert Task

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Tasks.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Tasks.csv”

In case you don’t want to use input file but need to provide array of Objects to

insert directly, then you can define the input as JSON array. For eg. JSON Array
to insert Tasks would be :
[{“Name”:"AppPerfect", “Site" : “California”}, {“Name”:"Automation Anywhere",
“Site" : “California”}]

6. Update Tasks in
bulk

vOperation : Bulk Update Task

vLookupFieldName : Provide lookup field name to perform Update operation.
For Eg. If you want to update Task object with Task
name as given in file or JSON array then provide the vLookupFieldName as
“Name”.

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the field names & subsequent
records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Tasks.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Tasks.csv”

In case you don’t want to use input file but need to provide array of Objects to
update directly, then you can define the input as JSON array. For eg. JSON Array
to update Tasks would be :
[{“Name”:"AppPerfect Corporation", “Site" : “California”},
{“Name”:"Automation Anywhere", “Site" : “USA”}]

7. Delete Tasks in
bulk

vOperation : Bulk Delete Task

vInput : Provide input file path or you can directly provide JSON array as an
input. It supports CSV, Excel ("xlsx", "xls", "xlt", "xlsm", "xltx", "xltm") file
formats as input.

In case of input file, provide the file path of the input file. The first row in the
input file should be a header row which defines the singlr field name &
subsequent records should be the field values in CSV or Excel file.
For Eg. If you have your input defined in Tasks.csv file then provide complete
path of the CSV file here, like “C:\Users\Administrator\Desktop\Tasks.csv”

In case you don’t want to use input file but need to provide array of Objects to
delete directly, then you can define the input as JSON array. For eg. JSON Array
to delete Tasks would be :
[{“Name”:"AppPerfect Corporation"}, {“Name”:"Automation Anywhere"}]

For History of any Object:

 Functions Parameter Values
1. Delete History of

any object
vOperation : Delete History

vLookupFieldName :
Provide lookup field name to perform Delete operation on any sales force
object.
For Eg. If you want to delete History object for contact with name as AppPerfect
then provide the vLookupFieldName as “Name”.

vLookupFieldValue :
Provide lookup field value to perform Delete operation.
For Eg. If you want to delete History object with History name as AppPerfect
then provide the vLookupFieldValue as “AppPerfect”.

vObjectType: Type of the object for which history is required. For Eg. Contact

2. Get History of
object from
Salesforce

vOperation : Get History

vLookupFieldName : Provide lookup field name to perform Get operation.
For Eg. If you want to get History object with History name as AppPerfect then
provide the vLookupFieldName as “Name”.

vLookupFieldValue : Provide lookup field value to perform Get operation.
For Eg. If you want to get History object with History name as AppPerfect then
provide the vLookupFieldValue as “AppPerfect”.

vOutputFileName: Provide output file path (in CSV) to store obtained result set.
For Eg. C:\Users\Administrator\Desktop\Result.csv

vObjectType: Type of the object for which history is required. For Eg. Contact

Error Handling

- Each Bot folder contains the below hierarchy.

o Error Folder

▪ Logs
• Error Logs Month-Day-Year.txt: In case of any error, this file logs error

message along with time stamp.
▪ Snapshots:

• Error Snap Month-Day-Year HourMinuteSecond.png: In case of any
error, this file captures screenshot of error with time stamp.

- Task Status of bot is set to failed in case of error.

Steps to setup a Connected App on Salesforce CRM:

- Login to Salesforce CRM, navigate to Sales Admin (Username) > Setup.
- On the left pane under App Setup navigate to Create > Apps.
- Click on Connected App and you can view your Consumer Key and Consumer Secret on app

information page. Consumer Key and Consumer Secret corresponds to ClientId and
ClientSecret attributes of Credential Vault.

- For More details on Connected App please refer:

https://developer.salesforce.com/docs/atlas.en-
us.api_rest.meta/api_rest/intro_defining_remote_access_applications.htm

- Add suitable IP Relaxation. For removing all restrictions navigate to manage -> Edit Policies. In
IP Relaxation under OAuth policies select Relax IP restrictions.

- For details on type of IP Relaxation please refer:
https://help.salesforce.com/articleView?id=connected_app_continuous_ip.htm&type=5

Important points to consider:

• It is possible for user having admin privileges to read and save the privileged files (open and
write file functions), so user of the bot should not have admin access.

• Credential Vault uses multiple encryptions to store sensitive information
(usernames/passwords /ClientID/ ...). These variables are used for various purposes in task
bots. In response to a potential leak or compromise, Credential Vault credentials must be
changed/rotated periodically

• https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/aae-
developer/aae-use-crendential-valult-to-store-sensitive-
data.html#Zj0vY2F0ZWdvcnkvYnVpbGQ/cD1CdWlsZA==

• User needs to enable History Tracking for the object to be able to track the history. User can
enable history tracking at Object Manager > [Object Name] > Fields and Relationships > Set
History Tracking > Enable [Object] History > [Select the fields user needs to track] > Save.

• To be able to delete the History of objects, follow these steps:

https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_defining_remote_access_applications.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_defining_remote_access_applications.htm
https://help.salesforce.com/articleView?id=connected_app_continuous_ip.htm&type=5
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/aae-developer/aae-use-crendential-valult-to-store-sensitive-data.html#Zj0vY2F0ZWdvcnkvYnVpbGQ/cD1CdWlsZA==
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/aae-developer/aae-use-crendential-valult-to-store-sensitive-data.html#Zj0vY2F0ZWdvcnkvYnVpbGQ/cD1CdWlsZA==
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/aae-developer/aae-use-crendential-valult-to-store-sensitive-data.html#Zj0vY2F0ZWdvcnkvYnVpbGQ/cD1CdWlsZA==

o Click the Gear icon and select Setup.
o Enter User Interface in the Quick Find box and select User Interface.
o Under the Setup heading, select the "Delete from Field History" and "Delete from

Field History Archive" checkbox.
o Click Save.
o After enabling the permissions above, grant your users the system permissions below

via permission set or custom profile. Enable 'Delete From Field History'. Enable 'Delete
From Field History Archive'.

• For information regarding how to input your Access Code, please refer the following link-
https://botstore.automationanywhere.com/inputting-your-access-code/

Bot Insight Details
To know how to use Automation Anywhere Bot Insight to track bot process data from for analytic
analysis, please refer: https://docs.automationanywhere.com/bundle/enterprise-
v11.3/page/topics/bot-insight/user/bot-insight-introduction.html

Troubleshooting & Support

 Please visit our Support Portal for any assistance on Bot functionality or Feature.

 Automation Anywhere provides a Product Documentation portal that can be accessed for

more information about AA’s products and guidance on building bots and Digital Workers.

The "Build" section of the portal includes these sections:

• Getting Started - information on building bots recommended practices (including use of the
Credential Vault)

• Build Advanced Bots - details on MetaBots and the approach to integrating code into them

• Build Digital Workers - high-level architecture

https://botstore.automationanywhere.com/inputting-your-access-code/
https://botstore.automationanywhere.com/inputting-your-access-code/
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/bot-insight/user/bot-insight-introduction.html
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/bot-insight/user/bot-insight-introduction.html
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/bot-insight/user/bot-insight-introduction.html
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/topics/bot-insight/user/bot-insight-introduction.html
http://www.appperfect.com/support/rpa/
http://www.appperfect.com/support/rpa/

